

Shear Strength of #57 Aggregates (Aggregate #A13 – TDOT Region 2)

Institute of Geotechnology

Table 1. Aggregate basic properties.

Property	Value
Specific Gravity for particles coarser than sieve #4 (ASTM-C127)	2.661
Specific Gravity for particles finer than sieve #4 (ASTM-D854)	2.734
Average Specific Gravity of Solids	2.662
Maximum Dry unit weight, Ib/ft ³ (ASTM-D4253)	101.048
Minimum Dry unit weight, Ib/ft ³ (ASTM-D4254)	87.720
Maximum void ratio (ASTM-D4254)	0.894
Minimum void ratio (ASTM-D4253)	0.644
D ₈₅ (mm)	21.20
D ₆₀ (mm)	16.10
D ₃₀ (mm)	10.30
D ₁₀ (mm)	6.00
Coefficient of uniformity, Cu	2.68
Coefficient of curvature, C _c	1.10

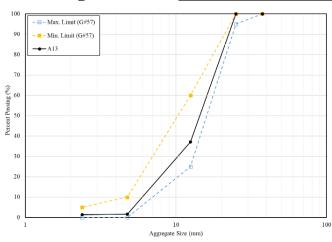
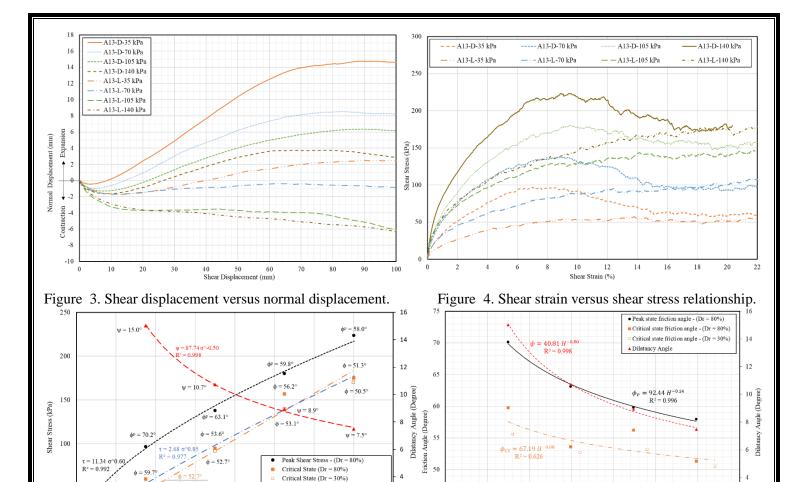


Figure 1. Gradation and size limits for A13 aggregate.

Table 2. Chemical composition of A13 aggregate.

Mineral	Percentage (%)
Calcium Carbonate (CaCo ₃)	39.70
Calcium Magnesium Carbonate	57.2
(Dolomite, CaMg(Co ₃) ₂)	
Silicon Oxide (Quartz, SiO ₂)	3.10
Others	0

Figure 1 shows the gradation of the aggregate and Table 1 summarizes its physical properties. The chemical composition of the tested aggregate was identified using powder X-ray diffraction (Table 2) where multiple aggregate particles were ground into powder to a size passing US sieve #200 (75 μ m). The test was conducted at the Institute for Advanced Material and Manufacturing (IAMM), University of Tennessee-Knoxville (UTK).


The morphology of the aggregate was measured using 3D computed tomography (CT) images for a representative sample with a diameter of 2 in. and a height of 10 in. (Figure 2). Sphericity index (I_S) refers to particles' 3D general shape regardless of angularity characteristics of corners and edges. I_S is calculated as the value of the actual volume of a particle divided by the volume of the sphere inscribed within the particle. Roundness index (I_R) is defined as the ratio of the particle's actual surface area divided by the surface area of a sphere with a size equal to the average size of the particle using its three principal axes. Form (F = shortest particle axis/ longest axis) is another shape parameter to describe granular materials. The mean values for morphology indices are $I_s = 2.483$, $I_R = 0.911$, and F = 0.512. For more details, the reader is referred to

https://alshibli.utk.edu/research/mo rphology-of-granular-materials/.

The shear strength of the aggregate was measured using a special large-scale direct shear (LSDS) apparatus at two relative densities ($D_r = 80\%$ to represent dense specimens and $D_r = 30\%$ for loose specimens). The aggregate was tested at normal stresses (σ) of 35, 70, 105, and 140 kPa (~ 5, 10, 15, and 20 psi) to represent typical stress ranges for fill aggregates behind a retaining wall. Figures 3 and 4 show the relationship between shear and normal displacements and the shear strain versus shear stress (τ) respectively. Figure 5 and Table 3 present a summary of peak state friction angles, critical state friction angles, and dilatancy angles in relation to normal stress. Figure 6 displays the same values with wall height. Table 4 lists the recommended Friction angle for the design of different wall heights.

Figure 2. CT of aggregates.

Figure 5. Linear and nonlinear Mohr	Coulomb envelopes.	Figure 6.	. Friction and dila	tancy angles versus wall height.
Table 3. Summary of measured friction stress (τ) .	on and dilatancy angles a	and the pow	ver model that rela	ates normal stress (σ) to shear
Peak state friction angle (Power model) (ϕ_p)	Critical state friction (Power model (ϕ_{cs})	0	Linear Mohr Coulomb for Critical state	Dilatancy angle (Power Fitting) (\v)

Dilatancy Angle - Power (Peak Shear Stress - (Dr = 80%))

Linear (Critical State (All Data))

- Power (Critical State (All Data)) - Power (Dilatancy Angle)

55 5

Normal Stress (kPa)

	Peak state friction angle (Power model) (ϕ_p)			Critical state friction angle (Power model) (ϕ_{cs})			Coulomb for Critical state friction angle	Dilata	ncy angl Fitting (ψ)		er		
	$\tau=11.34~\sigma^{0.60}$, $R^{2}=0.992$			$\tau = 2.68~\sigma^{0.85}$, $R^{2} = 0.977$				ψ = 87.7	4 σ ^{-0.50} ,	$R^2 = 0$.998		
	$\sigma = 35$ kPa	70	105	140	35	70	105	140	φ = 52.7°	35	70	105	140
ſ	70.2° 63.1°	° 59.8° 58.0°	59.7°	53.6°	56.2°	51.3°	$R^2 = 0.949$	15.0°	10.7°	8.9°	7.5°		
		05.1 55	57.0	56.0	55.5°	52.7°	53.1°	50.5°		15.0	10.7	0.9	1.5

15 20 Height of the Wall, H (ft)

Table 4. Values of recommended friction and dilatancy angles for different wall heights.

Wall Height (ft)	Recommended Friction Angle	Recommended Dilatancy Angle
< 10 ft	56	13
15 ft	54	10
20 ft	53	9
25 ft	52	8
30 ft	51	7

For more information check <u>https://alshibli.utk.edu/research/</u> or contact Professor Khalid Alshibli, Email: Alshibli@utk.edu